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A survey concerning morphisms on a semiorthoposet (SOP) is presented. It is 
pointed out that various types of SOPs possess an order-determining set of 
morphisms with a specified range. This result is applied to obtain representations 
of SOPs in terms of SOPs of sets and SOPs of functions, Connections between 
SOPs and effect algebras as well as tensor products of SOPs are obtained. Proofs 
of results are omitted and will be presented in a later publication. 

1. MOTIVATION 

To motivate the structures that we shall subsequently study, we ask the 
following question. What  essential ingredients must a general f ramework for 
the foundations of  quantum mechanics contain? There appear to be two 
crucial concepts that quantum mechanics must  describe. These two concepts 
have been given various names, but we shall call them effects and weights. 
The effects correspond to elementary measurements,  observables, events, or 
experimental propositions for a physical system. These effects usually result 
f rom an interaction between the system and a measuring apparatus. Depending 
on the condition, state, or preparation of  the system, each effect carries a 
certain weight. The weight of  an effect gives a measure of  the relative 
likelihood that the effect will occur. Al though the weight o f  an effect is 
usually taken to be a real number, this need not always be the case. Since 
we are primarily interested in comparing effects, that is, describing whether 
one effect is more likely to occur than another, the weight values can be a 
general set that is capable o f  ordering likelihoods. A weight is sometimes 
called a probability measure or a truth function, but we shall allow more 
general interpretations. 
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The set of effects possesses two basic structural properties that we shall 
call implication and negation. If an effect b occurs whenever an effect a 
occurs, we say that a implies b and write a -< b. Corresponding to an effect 
a, there is a complementary effect a '  called its negation. The negation a '  
occurs if and only if the effect a does not occur. We have not yet assumed 
any special properties for implication and negation. These properties will 
follow from two very general, basic axioms that we now present. 

Let P and M be the set of effects and weights, respectively, for a physical 
system. Let -< be a binary relation on P and let " P  ~ P be a unary operation. 
We assume the existence of an absurd effect 0 e P that never occurs. Then 
1 = 0' is the effect that always occurs. A real-valued weight will be described 
by a [0, 1]-morphism which is a map m: P ~ [0, 1] that satisfies (1) m(0) 
= 0, (2) if a ----- b, then m(a) <- re(b), and (3) m(a') = 1 - m(a) for all a 
P. A set of [0, 1]-morphisms M is separating if re(a) = m(b) for all m e M 
implies that a = b and order determining if m(a) <-- m(b) for all m E M 
implies that a --- b. Our first basic axiom was the existence of 0 e P. Our 
second axiom assumes the existence of a rich supply of weights on P. In the 
real-valued case this amounts to assuming that there is a separating and order- 
determining set M of [0, 1]-morphisms on P. Physically this means that there 
are enough experimental conditions or preparation procedures to distinguish 
between effects and to determine whether one effect implies another. Our first 
theorem shows that these two axioms imply important structural properties for 
----- and ' 

Theorem 1.1. If P has a separating and order-determining set of [0, 1]- 
morphisms M, then (P, 0, 1, --<, ') is a bounded poset satisfying: 

(i) a -< b implies b' --- a '  (order inverting) 
(ii) a = a" for all a e P (closed) 
(iii) a ---< a '  and b --- b' imply a -< b' (orthoconsistent) 

If we consider morphisms that are not real valued, then we obtain 
different structures than that given by Theorem 1.1. In these cases, (P, 0, 1, 
-<, ') is still a bounded poset satisfying (i). However, (ii) and (iii) are usually 
replaced by different properties. One of the main results of this article is that 
the converse of Theorem 1.1 holds. That is, bounded posets satisfying (i)-(iii) 
are precisely those structures that have a separating and order-determining 
set of [0, l]-morphisms. Similar results will also be obtained for other types 
of morphisms. 

2. DEFINITIONS 

Motivated by the work in Section 1, we now present the general defini- 
tions. A semiorthoposet (SOP) is a bounded poset (P, 0, 1, -<) with a unary 
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map ': P ---) P such that (1) a --- b implies b '  -< a ' ,  and (2) a ~ a" for all 
a ~ P. A unit SOP is a SOP in which 1' = 0. An element a E P is 
complementing if a / x  a '  = 0, sharp if a v a '  = 1, and closed if a = a". If  
a <- b ' ,  we write a 2. b. Notice that if a -< b ' ,  then b -< b" --- a ' ,  so 2. is a 
symmetr ic  relation. An element a E P is inconsistent if a _L a, strongly 
inconsistent if a = a ' ,  and orthoconsistent if a 2. a and whenever  b 2. b, 
then a J_ b. Also, a is consistent if a ,L a. The following lemma contains 
some simple but useful basic results. 

Lemma 2.1. A SOP P has the fol lowing properties. (i) a "  = a '  for all 
a ~ P. (ii) 0 '  = 1. (iii) I f P  is a unit SOP and i r a  is sharp, then a is 
complementing.  (iv) If  a v~ 0 is complementing,  then a is consistent. 

The previous definitions give local properties of  individual elements. 
We now give some global definitions. A SOP that is a lattice is called a 
SOL. A SOP P is complementing, sharp, or closed if every a ~ P is comple-  
menting, sharp, or closed, respectively. A SOP P is consistent if every 0 
a ~ P is consistent and P is orthoconsistent if every inconsistent a E P is 
orthoconsistent. It is easy to see that a closed or complementing SOP is a 
unit SOE A closed, sharp SOP is called an orthoposet. 

Lemma 2.2. (i) I f  P is closed, then a ~ P is sharp if  and only if a is 
complementing.  (ii) A SOP P is consistent if and only if P is complementing.  

If  P and Q are SOPs, a morphism +: P --> Q satisfies: ~b(0) = 0, a - 
b implies +(a)  - +(b), and #p(a') = + (a ) '  for all a ~ P. We sometimes call 
c~ a Q-morphism on P. If, in addition, (b is bijective and +(a)  --< +(b) implies 
a <-- b, then + is an isomorphism. A set of  Q-morphisms M on P is order 
determining if m(a) <- m(b) for all m ~ M implies a -< b. It is clear that if 
M is order determining, then M is separating; that is, if re(a) = m(b) for all 
m E M, then a = b. A sub-SOP Pl of  a SOP P is a subset o f  P such that 
0, 1 E P1 and if a ~ PI, then a '  ~ P1. Notice that a sub-SOP is itself a 
SOE A partial Q-morphism on P is a Q-morphism defined on a sub-SOP 
of  P. 

An effect algebra is a system (P, 0, 1, O),  where �9 is a partial binary 
operation on P satisfying the following: 

1. If  a �9 b is defined, then b G a is defined and b �9 a = a �9 b. 
2. I f  a �9 b and (a �9 b) G c are defined, then b q) c and a Q (b �9 

c) are defined and a G (b G c) = (a �9 b) �9 c. 
3. For every a ~ P there exists a unique a '  ~ P such that a �9 a '  = 1. 
4. I f  a �9 1 is defined, then a =- 0. 

For  an effect algebra P, we write a 2. b if a �9 b is defined. Moreover,  
we write a ----- b if there exists a c ~ P such that c L a and b = a �9 c. I f  
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P and Q are effect algebras, an effect morphism is a map +: P ~ Q such 
that ~b(1) = 1 and a _L b implies qb(a) .1, +(b) and ~b(a �9 b) = +(a) G +(b). 
An orthoalgebra is an effect algebra in which a .1, a implies a = 0. The 
next lemma shows that the notation a _1_ b is consistent with our previous 
usage and that a closed SOP is a generalization of an effect algebra. This 
result appears in Foulis and Bennett (1994). 

Lemma 2.3. (i) If (P, 0, 1, •) is an effect algebra, then a 3_ b if and 
only if a ~ b' and (P, 0, 1, -<, ') is a closed SOP. (iii) If (P, 0, 1, O) is an 
orthoalgebra, then (P, 0, 1, ---, ') is an orthoposet. 

Of  course, an effect morphism qb: P ~ Q is a SOP morphism when P 
and Q are considered as SOPs. 

3. EXAMPLES 

This section illustrates the generality and unifying power of SOPs by 
exhibiting a large number of examples. 

Example 1. Let X be a nonempty set and let r be a symmetric relation 
on X. For A ~ 2 x, define 

A' = {y E X: y r x f o r a l l x  ~ A} 

Then P = {2 x, Q~, X, _ ,  '} is a SOL. Simple examples show that P need 
not be a unit SOP and P need not be complementing, sharp, or closed. If r 
is also irreflexive, then P is complementing, but need not be sharp or closed. 

Example 2. Let L0(X) be the lattice of open subsets of a topological 
space X. For A ~ L0(X), define A' - int(AC). Then (L0(X), O, X, C, ') is a 
complementing SOL that is not sharp and not closed in general. It is easy 
to show that A ~ L0(X) is sharp if and only if A is clopen. Moreover, if A 
is sharp, then A is closed (A = A"). 

Example 3. Let V be a real or complex inner product space with inner 
product (x, y) and let L(V) be the lattice of all subspaces of V. Define the 
symmetric relation x 3_ y on V by (x, y) = 0 and for A ~ L(V) define 

A ' =  {y ~ V.'y _L x for a l lx  ~ A} 

Then (L(V), {0}, V, C, ') is a complementing SOL that is not sharp and not 
closed, in general. It is easy to show that A E L(V) is sharp if and only if 
A + A' = V and that the set of sharp subspaces forms an orthoposet. 

Example 4. Let S = [0, 1] C R with the usual order --<. For a E S, 
define a '  = 1 - a. Then S is a closed SOL that is not complementing (and 
hence, not sharp). In fact the only complementing (sharp) elements of S are 
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0 and 1. Moreover ,  a e S is consistent if and only if a > 1/2. Hence,  al though 
S is not consistent, it is orthoconsistent.  We can make  S into an effect algebra 
with the same order and ' as follows. For a, b E S, we say that a ~ b exists 
i f a  + b <- 1 and we then d e f i n e a G b  = a + b. 

Example 5. Let X be a nonempty  set and let P = [0, 1] x. For f ,  g E P, 
d e f i n e f  --< g i f f ( x )  -< g(x) for all x E X and d e f i n e f '  = 1 - f .  Then (P, 0, 
1, - ,  ' )  is a closed, orthoconsistent SOL that is not complement ing  (or sharp) 
in general. It is easy to show t h a t f  E P is sharp if and only i f f  a = f.  We 
can make  P into an effect algebra with the same order and ' as follows. For 
f,  g e P we say t h a t f O  g is defined i f f ( x )  + g(x) --  1 for all x E X and 
we then define f G g = f + g. For x ~ X, define the effect morph i sm qbx: 
P ~ [0, 1] by qbx(f) = f(x). Then {~bx: x E X} is an order-determining set 
of  effect morph i sms  on P. I f  P and [0, I] are considered as SOPs, then {qb~: 
x ~ X} is an order-determining set of  [0, 1]-morphisms on P. 

Example 6. Let H be a complex  Hilbert  space and let E(H) be the set 
of  posit ive linear operators 

E(H) = {A: 0 -< A --  I} 

For A, B ~ E(H), we define A - B if (Ax, x) <-- (Bx, x) for all x e H and 
we define A'  = I - A. Then (E(H), O, I, <--, ') is a closed, orthoconsistent  
SOP that is not complement ing  (or sharp). It is shown in Dvure~enskij  
(n.d.-b) tha tA E E(H) is sharp if and only i rA 2 = A; that is, A is a projection. 
We can make E(H) into an effect algebra with the same order and ' as 
follows. For A, B E E(H) we say that A �9 B is defined if A + B E E(H) 
and we then define A G B = A + B. A [0, 1]-valued effect morph i sm on 
an arbitrary effect algebra is called a state. For x E H with ][x[I = 1, define 
the state qbx on E(H) by d?x(A) = (Ax, x}. Then {qbx: x ~ H}  is an order- 
determining set of  states on E(H). 

4. F U N C T I O N  S O P s  

Let  X be a nonempty  set and Q be a SOR For f,  g e QX define f - g 
i f f ( x )  <- g(x) for all x ~ X and define f '  by f '(x) = f(x)' for all x e X. 
Moreover ,  we define 0, 1 E QX by 0(x) = 0, l(x) = 1 for  all x E X. Let  P 
C_ QX satisfy 0 ~ P a n d f  ~ P i m p l i e s f '  e P. Then (P, 0, 1, <-, ' )  is a SOP 
that we call a Q-function SOE The [0, 1]-function SOPs are particularly 
interesting because they correspond to a fuzzy logic or a fuzzy set theory. 
We shall later Show that the class of  closed orthoconsistent  SOPs coincides 
with the class of  [0, 1]-function SOPs. 

It is also of  interest to consider the sub-SOP {0, 1 } C_ [0, 1]. Of  course, 
{0, 1 } is the simplest  nontrivial SOP. Let P be a {0, 1 }-function SOP. I f  we  
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identify a set with its characteristic function, then P becomes a SOP of sets. 
Moreover, in this case, if A ~ P is considered as a set, then A' = A". We 
then call (P, Q3, X, C, c) a set-SOP. We shall also show that the class of 
orthoposets coincides with the class of set-SOPs. 

Suppose a SOP P has an order-determining set of Q-morphisms M. 
Define a map ~bM: P ---> QM by [~bta(a)](m) = m(a) and let (F, P, QM) = 
{+M(a): a ~ P}. We frequently denote a Q-function SOP by (~, QX) where 
~ C  QX. 

Theorem 4.1. (i) If M is an order-determining set of Q-morphisms on 
P, then (F, P, QM) is a Q-function SOP and qbM: P ---> F is an isomorphism. 
(ii) A SOP P has an order-determining set of Q-morphisms if and only if P 
is isomorphic to a Q-function SOP. (iii) Suppose P has an order determining 
set of Q-morphisms. If Q is closed, orthoconsistent, complementing, sharp, 
unit SOP, respectively, then P has these properties, respectively. 

Notice that F separates points, because if ml, m2 ~ M with ml 4=- m2, 
then there exists an a E P such that 

~bM(a)(ml) = ml(a) 4= m2(a) -: ~bM(a)(m2) 

The next result shows that (F, P, QM) is universal. In this result, M is order 
determining and is the set of all Q-morphisms on P. 

Theorem 4.2. (F, P, QM) is universal in the sense that if qb: P ---> (~,  
QX) is a morphism, then there exists a unique map a: X ---> M such that 
d?(a)(x) = ~bM(a)(a(x)) for all a ~ P, x ~ X. Moreover, c~ is injective if and 
only if +(P) separates points. 

5. O R D E R - D E T E R M I N I N G  M O R P H I S M  SETS 

We have seen in Section 4 that a SOP P is isomorphic to a Q-function 
SOP if and only if P has an order determining set of Q-morphisms. It is thus 
of interest to know whether P has an order-determining set of Q-morphisms. 
Moreover, we would like Q to be as simple as possible. For example, we 
have seen that Q = {0, 1} and Q = [0, 1] are important. 

We say that a SOP P has type t = 0, 1, 2, 3, or 4, respectively, if P is 
an orthoposet, closed and orthoconsistent, closed, sharp and unit, or comple- 
menting, respectively. It follows from Theorem 4. l(iii) that if P has an order- 
determining set of Q-morphisms, then Q must have the same type as P. We 
thus seek the simplest SOP of each type that is not of a previous type. 

If we define So = {0, 1 } and Sl = {0, 1/2, 1 }, then So is an orthoposet 
and $l is closed and orthoconsistent but is not an orthoposet. Thus, So has 
type 0 and $1 has type 1. The simplest SOP of type 2 that is not of type i 
is $2 = {0, 1, a, 13}, where a = oL' = ~", [3 = [3' = [3", and a, [3 are 
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unrelated. The  simplest  SOP of type 3 that is not of  type 2 is $3 = {0, 1, c~, 
a ' ,  c('}, where 0 < a < a"  < 1, 0 < c~' < 1, and there are no other relations. 
Finally, the s implest  SOP of  type 4 that is not o f  type 3 is $4 = {0, 1, c~, to, 
to' }, where  

0 = oL' < t o '  < c ~ < c ~ "  = 1, 0 < t o  = t o " < c ~ <  1 

and there are no other relations. 
The fol lowing result shows that any SOP has an abundance of  [0, 1]- 

morphisms,  where  [0, 1] is the SOP defined in Example  4. 

Theorem 5.1. I f  P is a SOP, then any partial [0, 1]-morphism on P has 
an extension to a [0, 1]-morphism on P. 

To illustrate the utility of  the abundance of  [0, 1]-morphisms, we now 
characterize various properties in terms of  these morphisms.  

Corollary 5.2. Let P be a SOP and let M be the set of  all [0, 1 ] -morphisms 
on P. (i) a ~ P is consistent if and only if there exists an m ~ M such that 
re(a) = 1. (ii) a ~ P is inconsistent if  and only if re(a) <- 1/2 for all m E 
M. (iii) a E P is strongly inconsistent if and only if m(a) = 1/2 for all m E 
M. (iv) P is complement ing  if and only if for  every a 4 : 0  in P there exists 
an m ~ M such that re(a) = 1. (v) P is a unit SOP if and only if for every  
a ~ 0 in P there exists an m e M such that m(a) ~ O. 

The next result is a morphism extension theorem for the various types 
of  SOPs. 

Theorem 5.3. I f  P is a SOP of type t = 0, 1, 2, 3, 4, then any partial 
St-morphism on P has an extension to an St-morphism on P. 

This extension theorem can be used to prove  the following result. 

Theorem 5.4. For a SOP P, the fol lowing statements are equivalent.  
(i) P has type t = 0, 1, 2, 3, or 4. (ii) P has an order-determining set o f  St- 
morphisms.  (iii) P is isomorphic to an St-function SOP. 

Corollary 5.5. For a SOP P, the fol lowing statements are equivalent.  
(i) P is closed and orthoconsistent.  (ii) P has an order-determining set o f  [0, 
1]-morphisms. (iii) P is isomorphic to a [0, 1]-function SOP. 

That  (i) implies (iii) in the next  corol lary has been proved by 
Katmo~ka  (1982). 

Corollary 5.6. For a SOP P, the fol lowing statements are equivalent.  
(i) P is an orthoposet.  (ii) P has an order-determining set of  {0, 1 }-morphisms.  
(iii) P is i somorphic  to a se t -SOE 
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6. E F F E C T  A L G E B R A  I M B E D D I N G S  

We have seen in Section 2 that an effect algebra is a closed SOP. We 
now consider an imbedding theorem for closed SOPs into effect algebras. 

If  P and Q are effect algebras, we define their horizontal sum P @ Q 
to be the disjoint union of P and Q with their O's and ! ' s  identified. For a, 
b ~ P O Q we say that a @ b is defined if both a, b are in P and a Op b 
is defined or both a, b are in Q and a @0 b is defined. In the first case we 
define a G b = a Op b and in the second a �9 b = a OQ b. It is easy to 
check that P �9 Q is an effect algebra. 

Let W be the horizontal sum W = [0, 1] G [0, 1]. Then W is an effect 
algebra and W can also be considered as a closed SOP with the same order 
and '. Since $2 is a sub-SOP (or sub-effect algebra) of W,, we know by Theorem 
5.4 that any closed SOP has an order-determining set of W-morphisms. We 
have introduced W because W-valued effect morphisms are more useful than 
S2-valued effect morphisms. The reason for this is that Wcontains long strings 
of sums, while $2 does not. Although a W-valued effect morphisms m is not 
a state, m can still be interpreted as a probability measure because re(a) 
[0, 1] for any individual a. Moreover, an effect algebra may not have an 
order-determining set of states, but still may have an order-determining set 
of W-valued effect morphisms. We now illustrate this with an example. 

I f  H is a Hilbert space, then the effect algebra E(H) of Example 6 in 
Section 3 has an order-determining set of  states. However, the horizontal 
sum E(HO �9 E(H2) of two such effect algebras does not have an order- 
determining (or even separating) set of  states. For example, 

for every state m. Nevertheless, E(HI) �9 E(H2) has an order-determining set 
of W-valued effect morphisms. To show this, write W as W = WI �9 14/2, W1, 
w2 -- [0, 1]. I f x  E HI ,  y ~ H2, Ilxl[ = Ilyl[ -- 1, define rex,y: E(HI) @ E(H2) 
--> W by m,,y(A) = (Ax, x) ~ W1 if A e E(H1) and mx, y(A) = {Ay, y) ~ W2 
if A E E(H2). It is easy to show that these mx,y form an order-determining 
set of  W-valued effect morphisms on E(H~) @ E(H2). This result also holds 
for finite or infinite horizontal sums. 

We say that a subset Li of an effect algebra L generates L if the smallest 
sub-effect algebra of L that contains LI is L itself. 

Theorem 6.1. Let P be a closed SOP and let M be an order-determining 
set of  W-morphisms on P. Then there exists an effect algebra Q, an order- 
determining set of W-valued effect morphisms ~(M) on Q, a SOP isomorphism 
d): P --> ~(P) C_ Q such that ~,(P) generates Q, and a bijection ~: M --> t~(M) 
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such that ~(m)(+(a)) = m(a) for every a ~ P, m ~ M. If Qt is an effect 
algebra with maps qbl: P --> Qb qh: M ---> t01(M ) satisfying the previous 
conditions, then QI and Q are isomorphic. Moreover, if a, b E P with a L 
b and there exists a c ~ P such that m(c) = m(a) 0 rn(b) for all m ~ M, 
then +(c) = qb(a) G +(b). 

Theorem 6.1 gives a canonical imbedding of a closed SOP into an effect 
algebra that automatically has an order-determining set of W-valued effect 
morphisms. This result may be important for the axiomatic foundations of 
quantum mechanics, because the axioms for a closed SOP can be easily 
justified on physical grounds. 

7. BASIC T E N S O R  P R O D U C T S  

This section introduces the concept of tensor products of SOPs, presents 
some examples, and constructs various basic tensor products. 

If P, Q, and R are SOPs, a bimorphism c~: P • Q -~ R satisfies: (1) if 
a, b E P, c, d ~ Q, then a ~ b implies that oL(a, c) <- cL(b, c) and c --< d 
implies that c~(a, c) <- oL(a, d); (2) c~(a, c) • c~(a', d) for all c, d ~ Q and 
c~(a, c) • ~(b, c') for all a, b ~ P; (3) ~(a, 1)' -< cL(a', 1) and cL(1, b)' -< 
oL(1, b') for all a E P, b ~ Q. 

Lemma 7.1. Let c~: P • Q --> R be a bimorphism. (i) If a, b ~ P and 
c, d E Q with a -< b and c -< d, then oL(a, c) --< c~(b, d). (ii) oL(a, 1)' = c~(a', 
1) and ~(1, b)' = ~(1, b') for all a ~ P, b ~ Q. (iii) If a • b, then a(a, c) 
• c~(b, d) for all c, d ~ Q and if c • d, then ~(a, c) • ~(b, d) for all a, b 

P. (iv) If R is a unit SOP, then c~(a, 0) = ~(0, b) = 0 for all a, b E P. 
(v) If R is a unit SOP, then c~(., 1) and c~(1, .) are morphisms from P and 
Q, respectively, into R. 

Notice that condition (2) is stronger than the condition c~(a, c) • ~(a ' ,  
c) that one might expect. Moreover, (2) is stronger than the analogous condi- 
tion for bimorphisms of orthoalgebras and effect algebras (Dvure~enskij, 
1995a; Foulis and Bennett, 1993). We have three replies to this criticism. 
First, one of the main motivations for studying these structures is to describe 
physical systems and (2) can be justified on physical grounds. Second, the 
counterpart to (2) can be assumed in orthoalgebras and effect algebras to 
obtain stronger results. Third, (2) automatically holds in many natural 
examples. 

Example 1. Define a: [0, 1] • [0, 1] --> [0, 1] by cL(a, b) = ab. It is 
clear that (1) and (3) hold. To prove (2), for any a, c, d ~ [0, 1] we have 

a ( c -  d) < - a ( 1 -  d)-< 1 - d  
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Hence, 

ac <- 1 - d + a d =  1 - ( 1  - a ) d =  (a'd) '  

so a(a, c) • a(a ' ,  d). 

Example 2. Let P be a SOL and define a: P x P ~ P by c~(a, b) = a 
^ b. Again, it is clear that (1) and (3) hold. To prove (2) we have 

a A c - - < a - < a " - < a " v d ' - < ( a ' / x d ) '  

Hence, a(a, c) L oL(a', d). 

Example 3. Let P = 2 x, Q = 2 r, R = 2 xxr be standard set-SOPs and 
define oL: P X Q --~ R by a(A, B) = A X B, where A X B is the usual set- 
theoretic Cartesian product. It is clear that (1)-(3) hold. 

Example 4. Let P = [0, 1] x, Q = [0, 1IV, R = [0, 1] xxr  be [0, 1]- 
function SOPs and define ec P x Q ---) R by ~(f, g) -= f | g, where f | 
g(x, y) =f(x)g(y) .  Then (1), (3) clearly hold and (2) follows from Example 1. 

Example 5. As in Example 6 of Section 3, let P = {A ~ B(HI): 0 --- 
A - < I } , Q  = {A E B ( H 2 ) : 0 - - - A - < I } , a n d R  = {A ~ B(HI |  
A --< I}, where HI |  is the usual tensor product and define e~: P x Q --> 
R by o~(A, B) = A | B. It is easy to verify (1) and (3). To verify (2), let A 

P and C, D ~ Q. We must show that 

A |  < - I |  I - ( I -  A ) @  D 

This is equivalent to showing that 

(Ax, xXCy, y} <- I l x l l 2 1 l y l l  2 - Ilxll2{Oy, y} + (Ax, x}{Dy, y) 

for all x ~ H~, y ~ /-/2. By Example 1, this inequality holds for all unit 
vector x e H~, y E /-/2. It then follows that the inequality holds for all x E 
H1, y E H2. 

Let P and Q be SOPs of the same type. A tensor product of P and Q 
is a pair (T, r), where T is a SOP of this type and r: P x Q --~ T is a 
bimorphism satisfying: (1) if a: P x Q ~ R is a bimorphism, where R is 
of this type, then there exists a morphism d~: T ~ R such that c~ = qb o "r, 
(2) T is generated by r (P  x Q). 

Lemma 7.2. If (T, r) and (T*, r*) are tensor products of P and Q, then 
there exists a unique isomorphism qb: T ~ T* such that "r* = r o r. 

Lemma 7.2 states that if the tensor product of two SOPs exists, it is unique 
to within an isomorphism. We now construct some basic tensor products. First, 
consider the orthoposet So = {0, 1 }. 
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Lemma 7.3. The tensor product of  So and So is (So, "r0), where "r0(a, b) 
= ab for all a, b E So. 

Next, consider the closed, orthoconsistent SOP Sj = {0, 1/2, 1 }. Define 
the SOP 

$1 | SI = {0, 1/4, 1/2, 3/4, 1} 

where $1 @ $1 is considered as a sub-SOP of  [0, 1]. Then $1 @ S1 is a closed, 
orthoconsistent SOE 

Theorem 7.4. The tensor product of  $1 and $1 is (S~ | $1, "rl), where 
Tl(a, b) = ab for all a, b E $1. 

We now come to the closed SOP $2 = {0, 1, c~, [3}, where c~ = a ' ,  [3 
= [3'. Define the set 

$ 2 |  = { 0 |  U { a |  ~ S2, a , b  4= 0} 

U { ( a |  ~ S2, a , b  4= O, 1} 

For ~, ~ Sz | $2 define 0 | 0 -< ~ -< 1 | 1 and for a, b E {a, [3} define 
a | 1 7 4  1, 1 |  ~ (a | b)' .  Define (0 | 0) '  = 1 | 1 , (1  | 1)' = 
0 @ 0 a n d f o r a  E {c~,[3} de f ine (1  @ a ) '  = 1 @ a , ( a |  1)' = a @  1. 
Finally, for a, b ~ {a, [3} define the ' o f  a | b as the notation indicates. 

Theorem 7.5. The tensor product of Sz and $2 is ($2 | $2, T2), where 
"rz(a, 0) = "rz(0, a) = 0 | 0 for all a E $2 and "rz(a, b) = a (~ b for all a, 
b y e 0 .  

Continuing with this program, we have the sharp SOP $3 = {0, 1, a ,  
cd, ed'}. Define the set 

S 3 |  = { 0 |  U { a |  E S3, a , b  4 = 0} 

U { ( a |  E S3, a , b  4 = O, 1} 

U {(a | b),': a , b  ~ S3, a , b  4 = O, 1} 

Define (0 @ 0)'  = 1 | 1, (1 | t ) '  = 0 @ 0, and for a E {a, ed, oL"} define 
(1 | a) '  = 1 | a ' ,  (a | 1)' = a '  | 1. Finally, for  a, b E {c~, a ' ,  e~"} define 
the ' and the " of  a @ b as notation indicates. We next define <-- on $3 | $3 
as follows: 

(1) a @ b < - c @ d i f a < - c a n d b < _ d .  
(2) (a | b)' --- c | d if a or b = 1 and this reduces to (1). 
(3) a |  ( c |  ~ c ' o r b < - d ' .  
(4) ( a |  < - ( c | 1 7 4 1 7 4  
(5) ( a |  <- (c | d)" if (c | d) '  < - a |  
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(6) (a | b)" -< (c | d) '  if c | d --- ( a |  
(7) ( a |  ( c | 1 7 4 1 7 4  
(8) a | 1 7 4 1 7 4 1 7 4  

Lemma 7.6. The tensor product of Ss and Ss is ($3 ~ 53, "1"3), where "r3(a , 0) 
= "r3(0, a) = 0 @ 0 for all a �9 $3 and 1"3(a, b) = a @ b for a, b ~ 0. 

We also have similar definitions and results for the complementing 
SOP S 4. 

8. T E N S O R  P R O D U C T S  OF SOPs 

We now give concrete representations of the tensor products of various 
types of SOPs. This is unlike the orthoalgebra or effect algebra theory, 
where tensor products are constructed abstractly in terms of the set of all 
bimorphisms (Dvure6enskij, 1995a; Foulis and Bennett, 1993). 

Theorem 8.1. If P C QX and R C Qr  are Q-function SOPs, where Q 
= So, S~, $2, $3, or $4, then the tensor product of P and R exists. 

Corollary 8.2. Let P C_ QX and R C Q r be Q-function SOPs where Q 
= So, St, $2, $3, or $4. Then the tensor product (P | R, "r) of P and R is a 
sub-SOP of (Q | Q)XXV and "r(f, g)(x, y) = f(x)  | g(y) for a l l f  �9 P, g �9 
R , x  ~ X , y  e g 

Corollary 8.3. Let P and R be SOPs of type t, t = 0, 1, 2, 3, 4. Then 
the tensor product (P | R, "r) of P and R is an St | St-function SOP. Moreover, 
if IX and v are St-morphisms on P and R, respectively, then there exists a 
unique St | St-morphism k on P | R such that k[r(a, b)] = Ix(a) | v(b) 
for all a �9 P,b �9 R. 

Corollary 8.4. Let P and R be orthoposets. Then the tensor product (P 
| R, -r) of P and R is a standard set-SOP of subsets of a Cartesian product 
X • Y and 7(a, b) = A • B where A _ X, B C Y. Moreover, if Ix and v are 
S0-morphisms on P and Q, respectively, then there exists a unique X E X • 
Y such that ix(a)v(b) = XAXB(h) for all a e P, b �9 R. 

Corollary 8.5. Let P and R be closed, orthoconsistent SOPs. Then the 
tensor product (P | R, T) of P and R is a [0, 1]-function SOP of functions 
on a Cartesian product X X Y and "r(a, b)(x, y) = f(x)g(y), where f 
[0, 1] x, g ~ [0, 1] v. Moreover, if Ix and v are [0, 1]-morphisms on P and Q, 
respectively, then there exists a unique (x, y) E X x Y such that ~(a)v(b) 
= "c(a, b)(x, y) for all a e P, b e R. 
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